
FTPMAN Snapshots—miscellaneous notes
Obsolete notions
Tue, Mar 25, 1997

Digitizer Sharing
In order to preserve the desirable feature that many users can share access to the swift

digitizer data, FTPMAN support may allow for looking without touching. The FTPMAN request
protocol includes parameters such as digitize rate, clock event selection, delay, and number
of points. The status reply message that updates the client on the progress of collecting the
snapshot data includes provision for the server to declare these parameters. By arranging for
the server to examine the current programmable settings—analogous to the adjustments of a
camera—and reply with the current values of these parameters, we can achieve the goal of
allowing many users to access the same waveform at the same time without interference. Of
course, since the hardware parameters are settable on this board, a user can change them, if
needed, through a parameter page. But the user who does this knows that such changes are
global; i.e., they affect all users of the waveforms. Note that the hardware design implies that
any such changes are common to all 8 channels of a given swift digitizer board, not only
those of current user interest.

A caveat is in order. The status reply to a snapshot request allows the server to "correct"
several parameters, as described above, but this set of parameters is common to all signals in
the request. Thus, one cannot ask to collect two signal waveforms in one request unless they
share the same parameter set. It may be likely that these parameters are configured in
hardware once and seldom changed. (This sharing consideration is ultimately rejected in favor of
giving the user more flexible control over the snapshot parameters. This topic is revisited later.)

We could allow a client to specify the parameters, but arrange that the server restores them
after the snapshot has been taken. Because there may be more than one user of FTPMAN for
any of the 8 signals, we might check, upon receiving new data, whether the parameters used
to make the snapshot are the same as expected. A queue can be used that a local application
reads to specify parameters for snapshots to be taken. The application could then capture the
data and return a pointer to a memory block containing such data in response. Using such
queuing may make it difficult to provide correlated waveforms across different nodes.

Swift support without FTPMAN
Since the waveforms are deposited by the hardware into fixed areas of memory, one

can easily plot the waveform that exists there, even allowing for overlap, if desired; whatever
waveform is found there is the last snapshot taken. This very informal access to the swift
digitizer waveforms works in many cases. But if FTPMAN is also running, one may get
interference from FTPMAN-initiated snapshots, if support is allowed for varying the snapshot
parameters as discussed above. Also, when a network request is satisfied, the digitizer may
be building a new waveform, so that the data is part new, part old. We need to avoid such
occurrences.

Access to swift digitizer waveforms could be provided via ordinary network requests, rather
than low-level access via memory address. A new listype could support such access. Its ident
might be merely a channel#. The system needs to find out whether that channel supports a
swift digitizer waveform. The returned data can include a header that indicates the snapshot
parameters. If the parameters change, the client could detect that. For an overlapped plot, the
client might refuse to plot unless the parameters return to the same ones that were in effect
the first time data was returned. For the single-trace mode, each plot could be properly

labeled with the conditions used.

SWFT local application—first try
Four channel#s are parameters to this local application. The readings of these

parameters sequence the operation of the swift digitizer board. Install selected parameter
values into the registers, based upon the channel readings. Establish and enable the delay
timer interrupt. Arm the board. Each cycle, monitor a counter that is incremented by the
occurrence of the interrupt. If the counter changes, the delay timer has finished and the
digitizer has started. Each 15 Hz cycle, check the value of the memory address register. When
it becomes reaches (#points*8), digitization is complete; all eight waveforms have been
collected in the 64K on-board memory.

Before repeating the measurement, we need to allow for a requester to capture the memory
as desired. But how can we do this? FTPMAN is one possible requester, but we need to alert
FTPMAN that the waveform is ready. Perhaps a state variable can inform FTPMAN of this
progress. A non-FTPMAN user is any (probably a Classic protocol) requester using a new
listype designed for access to this waveform data. How can we be sure that such a user can
capture the data from the hardware memory before re-arming the hardware to collect
another waveform?

In the FTPMAN case, we must try to maintain synchronous operation across multiple nodes so
that server-based access works. Suppose that FTPMAN captures the delay timer interrupt
counter value to signal that it has detected any data it needs from the hardware memory.
This captured value would be stored in the related capture memory block for the given
request. Perhaps SWFT could find such requests to see whether the counter has been updated
to match the present counter value. If it matches, then FTPMAN has no further need of keeping
the waveforms frozen in the hardware memory.

In the case of the use of a special listype for the purpose, such as from the Macintosh
Parameter Page program, SWFT can check whether such requests are active. If so, it could
notice whether they have been updated with the latest delay time interrupt counter value.

Re-visit changing parameters question
The swift digitizer hardware can run in systems that have FTPMAN support as well as

ones that do not. If FTPMAN is active, suppose we allow a request to establish the
programmable parameters in the hardware. A second user may do the same thing. If the
parameters are different, it will mean that the "first hog to the trough" loses, assuming that
both users are active simultaneously. It is expected that most times, only one user will be
actively interested in such data. At least this provision would enable that user to feel in
control of the digitizing parameters.

A non-FTPMAN user would operate the three channel parameters as needed. This could
interfere with an active request from another user, though. Access to swift digitizer data without
FTPMAN needs more thought.

Access to waveforms via new listype
There may be two new listypes supported, each using a channel# ident. One can

return a short data structure about the conditions of the measurement of the waveform
currently existing in the hardware buffer. This could include the four high-level parameters

FTPMAN Snapshots Misc p. 2

described above that are used as input to SWFT. It could also include an 8-byte date and time
structure. The interrupt counter value can also be included. The requester can label a plotted
waveform with this information. The second listype provides for access to the waveform data
itself. By watching the data in such a request, one can know when it has been updated with
the latest info. Such a user would have to request the waveform itself upon learning that a
new one is available. One cycle after that, a new waveform can be collected, allowing one
cycle for the requester to send a one-shot request for that waveform.

This scheme assumes that the requester can access the waveform data readily. If he has to
collect 4 signals of 4K points each (32K bytes), this may be a tall order! The point is that we do
not want to copy waveform data out of the hardware buffer except when necessary. It is
necessary for FTPMAN because of its protocol design. We do not want to stall the collection of
new waveforms for possible other clients just because an FTPMAN user is not finished looking
at the display of a waveform just captured.

For the non-FTPMAN case, the request might include the parameters, or the parameters
could be adjusted separately, to be used the next time a measurement is called for. The data
can be returned at whatever rate was requested. The #bytes requested should be enough for
the data from at least one signal. If this is not possible, then the reply data will have to be
delivered in parts. When all has been returned, the status can indicate this, and another
measurement can be permitted, if there is something waiting in the message queue.

Request data ident
node
chan

Setting data ident
node
chan

Setting data
event (2)
delay (2)
rate (2)
#pts (2)

Reply data
status (2)
event (2)
delay (2)
rate (2)
date/time (8)
#pts (2)
data index (2)
data words (n*2)

Suppose, in an effort to prevent interference between multiple users, we only try to
satisfy one user at a time. The local application SWFT reads snapshot parameters from a
message queue, installs the parameters into the swift digitizer registers, then makes the

FTPMAN Snapshots Misc p. 3

measurement. When finished it does nothing further until there was confirmation of no
further need for the data. In this case, copying would not be necessary. For FTPMAN, though,
copying could be useful, because the user may keep the request active for a long time.

For Classic protocol access to this data, copying of waveform data will not be done, in order
to prevent unnecessary time used for that purpose. (The reason for adding a memory to the
swift digitizer board was to avoid having to do this.) The hardware buffer must therefore
remain stable while the data is emptied out to a requester. A requester makes a periodic
request for such data. Status, parameters, and data (when available) will be included in the
replies. The status will indicate complete when the delivery of all data is finished. The reason
for delivering the data in pieces is that up to 4096 words (8192 bytes) of data are available for
each channel in the request, so it cannot all fit into a single datagram. The request period is
limited to 15Hz, so a user should choose the buffer size with care so that the hardware buffer
doesn't hold up a new measurement inordinately long. Again, non-FTPMAN use of the swift
digitizers needs further thought.

Auto-repeat of last measurement
If the queue is empty when SWFT is ready to make another measurement, one might

enable a repeat of the previous parameters used. This would keep the memories fairly
current. If an infrequent event were chosen, one might want to have a way of canceling the
current parameter set. To this end, one might like to be able to view the contents of the
queue. The contents of the queue might be 16 bytes altogether, assuming 2 bytes for the delay
in µs, 8 bytes for date/time.

evnt delay,ms rate,kHz #points
0014 16.02 100 4096

Update of replies to waveform listype
If status last sent was incomplete, continue to return updated status only. But watch

for completion status. When this occurs, return such status, and commence returning data as
will fit in buffer given.

Who would place a new entry into the queue? At first, FTPMAN would do it. Next a new
setting routine would do it, in order to support non-FTPMAN (Classic) users. This means that
the time included in the queue entry must be the time-of-day that the entry was added to the
queue, not the time-of-day the measurement was made.

FTPMAN Snapshots Misc p. 4

